今天,学历无忧网小编为大家整理了成考高数二怎么拿高分,希望能够帮助到广大考生,一起来了解下吧!
成考高数二怎么拿高分
成人高考高数二满分为150分,考生报考成人高考高数二可以通过历年真题找出重要考试知识点,在进行规划,总结。成人高考高数二如何拿高分
在做题的过程中,你要熟练地运用那些公式。
做完题了,有时间就多看看课本的公式。(可六十五分以上)
如果想高分,就买相关配套的练习并将它也弄懂。
一般地,这么多的问题都做完的话,而且是正确地熟练地完成的话,八十五分以上是没问题。
基本概念要一个字一个字理解并记忆,要准确掌握基本概念的内涵外延。只有思维钻进去才能了解内涵,思维要发散才能了解外延。只有概念过关,做题才能又快又准。尽管工作和学习都很忙碌繁琐,但相关教材上的习题都应该抽取一定的时间认真完成,不要为节省时间而省略做题步骤。每次作业都是一次检验的机会,越早发现问题,就能越早制定相应计划去完善。
成人高考高数二必备考试重点整理
(一)极限
1.知识范围
(1)数列极限的概念和性质
数列数列极限的定义
唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理
(2)函数极限的概念和性质
函数在一点处极限的定义左、右极限及其与极限的关系χ趋于无穷(χ→∞,χ→+∞,χ→-∞)时函数的极限函数极限的几何意义
唯一性四则运算法则夹逼定理
(3)无穷小量与无穷大量
无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的比较
(4)两个重要极限
sinxlimx=1x→0
1lim1+x=ex→∞x
2.要求
(1)了解极限的概念(对极限定义中“ε—N”“ε—δ”“ε—M”的描述不作要求)。掌握函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系,会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(2)连续
1.知识范围
(1)函数连续的概念函数在一点处连续的定义左连续和右连续函数在一点处连续的充分必要条件函数的间断点
(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性
(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握函数(含分段函数)在一点处的连续性的判断方法。
(2)会求函数的间断点。
(3)掌握在闭区间上连续函数的性质,会用它们证明一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用函数的连续性求极限。
二、一元函数微分学
(一)导数与微分
1.知识范围
(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义可导与连续的关系
(2)导数的四则运算法则与导数的基本公式
(3)求导方法复合函数的求导法隐函数的求导法对数求导法
(4)高阶导数高阶导数的定义高阶导数的计算
(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性
2.要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。
(4)掌握隐函数的求导法与对数求导法。会求分段函数的导数。
(5)了解高阶导数的概念,会求简单函数的高阶导数。
(6)理解微分的概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
(二)导数的应用
1.知识范围
(1)洛必达(L’Hospital)法则
(2)函数增减性的判定法
(3)函数极值与极值点最大值与最小值
(4)曲线的凹凸性、拐点
(5)曲线的水平渐近线与铅直渐近线
2.要求
(1)熟练掌握用洛必达法则求“0∞”“0∞”“∞—∞”型未定式的极限的方法。
(2)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。
(3)理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会求解简单的应用问题。
(4)会判定曲线凹凸性,会求曲线的拐点。
(5)会求曲线的水平渐近线与铅直渐近线。
三、一元函数积分学
(一)不定积分
1.知识范围
(1)不定积分原函数与不定积分的定义不定积分的性质
(2)基本积分公式
(3)换元积分法第一换元法(凑微分法)第二换元法
(4)分部积分法
(5)一些简单有理函数的积分
2.要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(仅限形如2222。∫axdx、a+xdx的三角代换与简单的根式代换)
(4)熟练掌握不定积分的分部积分法
(5)掌握简单有理函数不定积分的计算。
(二)定积分
1.知识范围
(1)定积分的概念定积分的定义及其几何意义可积条件
(2)定积分的性质
(3)定积分的计算变上限的定积分牛顿—莱布尼茨(Newton—Leibniz)公式换元积分法分部积分法
(4)无穷区间的广义积分、收敛、发散、计算方法
(5)定积分的应用平面图形的面积、旋转体的体积
2.要求
(1)理解定积分的概念与几何意义,了解可积的条件。
(2)掌握定积分的基本性质
(3)理解变上限的定积分是上限的函数,掌握对变上限定积分求导数的方法。
(4)熟练掌握牛顿—莱布尼茨公式
(5)掌握定积分的换元积分法与分部积分法。
(6)理解无穷区间广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成旋转体的体积。
四、多元函数微分学
1.知识范围
(1)多元函数多元函数的定义二元函数的定义域二元函数的几何意义
(2)二元函数的极限与连续的概念
(3)偏导数与全微分一阶偏导数二阶偏导数全微分
(4)复合函数的偏导数隐函数的偏导数
(5)二元函数的无条件极值和条件极值
2.要求
(1)了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。
(2)了解二元函数的极限与连续的概念。
(3)理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法。掌握二元函数的二阶偏导数的求法,掌握二元函数全微分的求法。
(4)掌握复合函数与隐函数的一阶偏导数的求法。
(5)会求二元函数的无条件极值和条件极值。
(6)会用二元函数的无条件极值及条件极值求解简单的实际问题。
五、概率论初步
1.知识范围
(1)事件及其概率随机事件事件的关系及其运算概率的古典型定义概率的性质条件概率事件的独立性
(2)随机变量及其概率分布随机变量的概念随机变量的分布函数离散型随机变量及其概率分布(3)随机变量的数字特征离散型随机变量的数学期望方差标准差
2.要求
(1)了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。
(2)掌握事件之间的关系:包含关系、相等关系、互不相容(或互斥)关系及对立关系。
(3)理解事件之间并(和)、交(积)、差运算的定义,掌握其运算规律。
(4)理解概率的古典型定义;掌握事件概率的基本性质及事件概率的计算。
(5)会求事件的条件概念;掌握概率的乘法公式及事件的独立性。
(6)了解随机变量的概念及其分布函数。
(7)理解离散型随机变量的定义及其概率分布,掌握概率分布的计算方法。
(8)会求离散型随机变量的数学期望、方差和标准差。
专升本没过分数线还能被录取吗
专升本没过录取分数线机会并不是很大,部分院校在补录的时候可能会降分,但并不是很大。目前国家认可的专升本学历有成考专升本,自考专升本,统招专升本和国家开放大学专升本几种。
普通类专升本征求志愿录取结束后,如高校仍有招生计划未完成,由高校提出降分申请,经批准后,公办本科院校可在该类别总分录取控制分数线下10分以内(含10分)、民办本科院校和独立学院可在该类别总分录取控制分数线下20分以内(含20分),在征求志愿有填报该院校专业志愿的考生中,从高分到低分择优录取;英语单科不降分。未报到考生的招生计划余额不再组织补录取。这意味着如果你英语单科达到了英语最低切线,总分距离录取控制分数线20分以内。千万别放弃,认真填报征求志愿,还是很有机会被本科学校录取的。
没有过省控制线的专升本同学,如果自己分数和省控制线相差不是太多的话,可以考虑安静等待,等一些学校降分录取给自己录取上,不过这样的可能性不是太大,不要抱有太大期望。
专升本省控线没达到的同学其实还可以选择自学考试,总共需要学习十几门课程,每门课程达到及格线即可。
专升本的省控线由两个因素确定:一、招生计划,可以简单理解为招生人数;二、全省考生成绩,就是成绩排名,接近我们比较常见的分数段统计表。然后进行卡线,可以理解为我们高考时一本线、二本线,踩线生的概念(例如:这个学校招的人一共就1000个,所以1000开外的就没有机会),如果你的排名进入了招生计划限定人数以内,就相当于过了省控线反之,则无缘。
例如河南省普通高校专升本招生录取控制分数线,省招办按照国家有关文件规定,根据当年招生计划、全省考生统考成绩统计表等因素,按略大于招生计划数确定各批各类录取控制分数线。划定录取控制分数线的原则是既要考虑普通高校能够完成招生计划,又要减少自然落选的人数。原则上高于省控线则有机会被录取,低于省控线则无缘本科院校。
成考高数一和高数二有区别吗?
成考高数一和高数二有区别吗?成人高考高数一和高数二的区别主要包括适合考生不同、考试重点内容不同、对知识的掌握程度要求不同、分数占比不同、试卷大题考察侧重点不同等。1、适合考生不同
《高数》 (一)是理工类考生的考试科目,《高数》 (二)是经济管理类考生的考试科目。
2、考试重点内容不同
《高数》(一)主要是以《高数》为点,约有7章内容,主要贯穿微分学和积分学这条主线,考生复习的重点也是微分学、积分学。
《高数》(二)是经济类、管理类的必考科目,试题主要有两部分,一部分为高等数学内容,约占92%;另一部分是概率论初步,约占8%。
无论是《高数》(一),还是《高数》(二),总的来讲试题考查得都较全面,试题分布较合理,主要贯穿极限、导数、积分这条主线。在考查基本概念的基础上,以考查基本计算能力为主,大多数考题都是常规计算题。
3、对知识的掌握程度要求不同
《高数》 (一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正变换、正切变换和正割变换。《高数》 (二)只要求掌握正弦变换、正切变换等。
4、分数占比不同
从实际考试情况看,《高数》 (一)一般比《高数》(二)多出约30%的考题,约占45分左右。有的考生考《高数》(一),但是跟着《高数》(二)的辅导听课,也是可行的,但考生必须把《高数》(二)没涉及的知识补上,不然就会白白丢了30%的分数。
5、试卷大题考察侧重点不同
《高数》 (一)一般涉及导数的应用,如函数的性质和曲线形状、导数的几何意义、求曲线的切线方程和法线方程。定积分的应用主要是定积分的换元积分法的应用,定积分换元积分法作证明题,还有定积分的几何应用,求平面图形的面积和平面图形绕坐标轴旋转所生成的旋转体的体积等。
在《高数》(二)的重点内容概率论初步里,考生复习的重点是理解随机现象、随机试验、随机事件的有关概念;概率的计算;离散形随机变量的概率分布;离散形随机变量的数字特征——期望与方差。
综上所述,以上就是成考高数一和高数二区别的相关介绍,对成考高数还有疑问或者想了解成考其他信息的考生可以咨询起航教育的在线老师。
以上就是成考高数二怎么拿高分全部内容,更多相关信息,敬请关注学历无忧。
以上就是学历无忧网整理的成考高数二怎么拿高分相关内容,想要了解更多成人高考相关信息,敬请查阅学历无忧网。
免责声明:文章内容来自网络,如有侵权请及时联系删除。